2,288 research outputs found

    Refraction of shear zones in granular materials

    Full text link
    We study strain localization in slow shear flow focusing on layered granular materials. A heretofore unknown effect is presented here. We show that shear zones are refracted at material interfaces in analogy with refraction of light beams in optics. This phenomenon can be obtained as a consequence of a recent variational model of shear zones. The predictions of the model are tested and confirmed by 3D discrete element simulations. We found that shear zones follow Snell's law of light refraction.Comment: 4 pages, 3 figures, minor changes, jounal ref. adde

    Asteroid Cooling Rates Indicated by K-Feldspar Exsolution Textures in H4 Ordinary Chondrites

    Get PDF
    Undisturbed thermal metamorphism in ordinary chondrite (OC) asteroids, produced through the radioactive decay of 26Al, is expected to result in an onion-shell-like structure. In such a structure, the inner layers of the asteroid experience more extensive thermal metamorphism, as represented by higher petrologic type, than the exterior layers. Furthermore, cooling rates are expected to be slower for OCs of high petrologic type than those of low petrologic type. However, cooling rates determined using metallographic methods and pyroxene diffusion are inconsistent with onion-shell-style cooling and have resulted in new models. These models argue for the disruption of the asteroid after peak metamorphism followed by reaccretion into a rubble pile. Improved constraints on cooling rates would provide a better understanding of the timing and scale of disruptive events. Feldspar microtextures are another tool that can be used to determine asteroid cooling rates. In OC chondrules, plagioclase is present as either a primary phase, or a secondary phase forming from the crystallization of mesostasis glass through petrologic type 4, followed by chemical and textural equilibration. Potas-sium feldspar is observed in petrologic types 3.6-6, as either patches or lamellae exsolved from albite in a perthite texture, often near pores or fractures. Exsolution occurs most commonly, and most extensively, in petrologic type 4. Because the feldspar exsolution wavelength is related to the rate at which grains cooled from the solvus temperature, determined from the minerals bulk composition, the chondrite cooling rate can be measured from regions of exsolution. We have previously reported the perthite exsolution cooling rate of Avanhandava, an H4 chondrite, to be 1 C per 1-4 months over a temperature interval of 765-670 C. A peristerite exsolution texture was also present in the Na-rich lamellae for which we estimated a cooling rate of 1 C in 103-104 years from 570-540 C. Overall, the cooling rates determined from Avanhandava are consistent with pyroxene diffusion (fast cooling at high temperatures) and metallographic rates (slow cooling at low temperatures), hence with the rubble pile model of disruption and reaccretion. Here, we characterize feldspar microtextures in four additional H4 chondrites to test the consistency of feldspar cooling rates across a range of samples. We show that all H4s are similar and support rubble pile models

    Danish High Performance Concretes

    Get PDF

    Value at Risk models with long memory features and their economic performance

    Get PDF
    We study alternative dynamics for Value at Risk (VaR) that incorporate a slow moving component and information on recent aggregate returns in established quantile (auto) regression models. These models are compared on their economic performance, and also on metrics of first-order importance such as violation ratios. By better economic performance, we mean that changes in the VaR forecasts should have a lower variance to reduce transaction costs and should lead to lower exceedance sizes without raising the average level of the VaR. We find that, in combination with a targeted estimation strategy, our proposed models lead to improved performance in both statistical and economic terms

    'Climate connectivity' in the daylight factor basis of building standards

    Get PDF
    This paper describes a proposal for a daylight standard for CEN countries. It is now widely accepted in the research community, and increasingly so amongst practitioners, that the standards/guidelines for daylight in buildings are in need of upgrading. The essence of the proposal is that the `target' for daylight provision should be founded on the availability of daylight as determined from climate files. The proposal is in fact a refinement of an approach originally described in a CIE document from 1970, and which appears to have been largely overlooked since then. The proposal states that a design should achieve a target daylight factor at workplane height across a specified percentage of the relevant floor area for half of the daylight hours in the year, where the target daylight factor is based on the provision of 300 lux. A key feature of the refinements are the formulation of the methodology such that the likelihood for misinterpretation and `game-playing' is greatly reduced, if not eliminated altogether. The method, founded on cumulative diffuse illuminance curves, could be introduced relatively swiftly since it requires only modest enhancement of existing daylight prediction tools. In addition, the proposal will provide a sound `footing' for eventual progression to evaluations founded on full-blown climate-based daylight modelling

    Unjamming due to local perturbations in granular packings with and without gravity

    Full text link
    We investigate the unjamming response of disordered packings of frictional hard disks with the help of computer simulations. First, we generate jammed configurations of the disks and then force them to move again by local perturbations. We study the spatial distribution of the stress and displacement response and find long range effects of the perturbation in both cases. We record the penetration depth of the displacements and the critical force that is needed to make the system yield. These quantities are tested in two types of systems: in ideal homogeneous packings in zero gravity and in packings settled under gravity. The penetration depth and the critical force are sensitive to the interparticle friction coefficient. Qualitatively, the same nonmonotonic friction dependence is found both with and without gravity, however the location of the extrema are at different friction values. We discuss the role of the connectivity of the contact network and of the pressure gradient in the unjamming response.Comment: 12 pages, 13 figure

    Evolved-Lithology Clasts in Lunar Breccias: Relating Petrogenetic Diversity to Measured Water Content

    Get PDF
    Studies of the inventory and distribution of water in lunar rocks have recently begun to focus on alkali suite samples as possible water repositories, particularly the most highly evolved granitoid lithologies. Although H analyses of feldspars in these rocks have so far pointed to 'low' (less than 20 ppm) H2O contents, there is sufficient variability in the dataset (e.g., 2-20 ppm) to warrant consideration of the petrogenetic factors that may have caused some granitoid-to-intermediate rocks to be dryer or wetter than others. Given that all examples of these rocks occur as clasts in complex impact breccias, the role of impact and other factors in altering water contents established by primary igneous processes becomes a major factor. We are supporting our ongoing SIMS studies of water in evolved lunar lithologies with systematic SEM and EPMA observations. Here we report a synthesis of the observations as part of developing discriminating factors for reconstructing the thermal, crystallization and shock history of these samples as compared with their water contents
    • …
    corecore